A comparative study on multispectral agricultural images classification using Bayesian and neural networks approaches
نویسندگان
چکیده
In this comparative study, the Bayesian and a neural network (the HLVQ) approaches are used to classify multispectral LANDSAT images. The studied area contains several agricultural classes (wheat, flax,....). Some classes are found to be non homogeneous and thus are divided in this study into several subclasses. The Gaussian assumption needed by the Bayesian classifier is thus justified by this division. The main result obtained in this study is that the Bayesian classifier and the neural network considered here provide equivalent solutions for the classification of agricultural multispectral images.
منابع مشابه
A Comparative Study of Conventional and Neural Network Classification of Multispectral Data
In this study, the classification of remotely sensed data using several classifiers and neural networks is considered. The application was conducted using a test scene containing mainly agricultural areas. The main result obtained in this study is that the application of topological map based neural networks to classify the intensity vectors issued from agricultural classes are more suited than...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملBayesian Networks in the Classification of Multispectral and Hyperspectral Remote Sensing Images
In this paper we study the application of bayesian network models to classify multispectral and hyperspectral remote sensing images. Different models of bayesian networks as: Naive Bayes, Tree Augmented Naive Bayes, Forest Augmented Naive Bayes and General Bayesian Networks, are applied in the classification of hyperspectral data. In addition, several bayesian multi-net models are applied in th...
متن کاملRemotely Sensed LANDSAT Image Classification Using Neural Network Approaches
In paper, LANDSAT multispectral image is classified using several unsupervised and supervised techniques. Pixel-by-pixel classification approaches proved to be infeasible as well as time consuming in case of multispectral images. To overcome this, instead of classifying each pixel, feature based classification approach is used. Three supervised techniques namely, k-NN, BPNN and PCNN are investi...
متن کامل